Virginia Standards of Learning
a) the planets in the solar system;
b) the order of the planets in the solar system; and
c) the relative sizes of the planets.
SOL 4.8 The student will investigate and understand the relationships among Earth, the moon, and the sun. Key concepts include
c) the causes for the phases of the moon
Background Information:
- Our solar system is ancient. Early astronomers believed that Earth was the center of the universe and all other heavenly bodies orbited around Earth. We now know that our sun is the center of our solar system and eight planets, a handful of dwarf planets, 170 named moons, dust, gas, and thousands of asteroids and comets orbit around the sun.- Our solar system is made up of eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
- Mercury, Venus, Earth, and Mars are considered terrestrial planets. Jupiter, Saturn, Uranus, and Neptune are called gas giants.
- Mercury is closest to the sun and is a small, heavily cratered planet. Mercury looks like our moon. Since Pluto’s reclassification from planet to dwarf planet, Mercury is now the smallest planet in our solar system.
- Venus is second from the sun. It is similar to Earth in size and mass, and has a permanent blanket of clouds that trap so much heat that the temperatures on the surface of Venus are hot enough to melt lead.
- Earth is third from the sun. Earth’s atmosphere, the liquid water found on Earth, and its distance from the sun, among many other factors, make Earth a haven for life.
- Mars is fourth from the sun. The atmosphere on Mars is thin and there is a vast network of canyons and riverbeds on the red planet. Scientists hypothesize that Mars once supported a wet, warm Earth-like climate.
- Jupiter is fifth from the sun. Jupiter is the largest planet in the solar system and is considered a gas giant. Jupiter has no solid surface.
-Saturn is sixth from the sun. Early scientists thought Saturn was the only planet with rings, but we now know that all four gas giants (Jupiter, Saturn, Uranus, and Neptune) have rings.
- Uranus is seventh from the sun. Uranus is a gas giant.
- Neptune is eighth from the sun. Neptune appears blue through telescopes and is a gas giant.
- The eight planets sorted by size from largest to smallest are: Jupiter, Saturn, Uranus, Neptune, Earth, Venus, Mars, and Mercury.
- Pluto is no longer included in the list of planets in our solar system due to its small size and irregular orbit. Many astronomers questioned whether Pluto should be grouped with worlds like Earth and Jupiter. In 2006, this debate led the International Astronomical Union (IAU), the recognized authority in naming heavenly objects, to formally reclassify Pluto. On August 24, 2006, Pluto's status was officially changed from planet to dwarf planet.
- A new distinct class of objects called "dwarf planets" was identified in 2006. It was agreed that "planets" and "dwarf planets" are two distinct classes of objects. The first members of the dwarf planet category are Ceres, Pluto and 2003 UB313, given the name Eris.
- A dwarf planet has not "cleared the neighborhood" around its orbit, which means it has not become gravitationally dominant and it shares its orbital space with other bodies of a similar size.
Earth completes one revolution around the sun every 365 ¼ days. The moon revolves around Earth about once every month.
- Due to its axial tilt, Earth experiences seasons during its revolution around the sun.
- The phases of the moon are caused by its position relative to Earth and the sun. The phases of the moon include the new, waxing crescent, first quarter, waxing gibbous, full, waning gibbous, last (third) quarter, and waning crescent.
- The sun is an average-sized yellow star, about 110 times the diameter of Earth. The sun is approximately 4.6 billion years old.
- Our moon is a small rocky satellite, having about one-quarter the diameter of Earth and one-eightieth its mass. It has extremes of temperature, virtually no atmosphere or life, and very little water.
- Our understanding of the solar system has changed from an Earth-centered model of Aristotle and Ptolemy to the sun-centered model of Copernicus and Galileo.
Important Vocabulary:
cosmic dust - small particles less than 1mm in size produced from asteroids and cometscrater - bowl-shaped hollow on the surface of a planet, moon, or asteroid formed by a rock collision
dwarf planet - celestial body with all the characteristics of a planet except it does not "clear the neighborhood" around its orbit
gas giant - planet mostly made up of gas, includes Jupiter, Saturn, Uranus, and Neptune
moon - a rock that orbits around a planet or asteroid
orbit - the path of an object around an object caused by the larger objects gravitational pull
satellite - an object held in orbit around a planet or moon by gravity such as the Moon
terrestrial planet - planet made of rock, includes Mercury, Venus, Earth, and Mars
Day 1 - The Solar System
Students will:- Learn about the thirteen planets in the solar system and the difference between the eight planets and the five dwarf planets.
- Create a solar system to scale of the eight planets.
- Simulate the theories of Aristotle, Ptolemy, Copernicus, and Kepler using the solar system mobile.
Day 2 -
Pluto & the Dwarf Planets
Students will:- Compare and contrast the characteristics of planets and dwarf planets.
- Read about the discovery of Pluto and it’s reclassification to a dwarf planet in 2006.
- Create a blink comparator to understand how Clyde Tombaugh discovered Pluto.
Then we will read selections from Pluto: From Planet to Dwarf by Elaine Landau to learn more about Pluto’s discovery in 1930 and subsequent reclassification in 2006. Lastly, we will create our own blink comparator out of simple items like a box and tracing paper so students understand the technique Clyde Tombaugh used to discover Pluto.
Day 3 - The Sun
Students will:- Recall what they already know about the sun.
- Compare the size of the sun to the size of the planets surrounding it.
Day 4 - The Moon
Students will:- Identify the differences between life on Earth and life on the Moon.
- Explore the landscape, size, age and makeup of the Moon.
- Analyze popular misconceptions and subsequent historical contributions in understanding the Moon.
- Examine the movement of the Earth around the Sun and the Moon around the Earth to create the phases of the Moon.
At the end of the lesson students will do a 3-2-1 analysis in their journals and write three ways being on the moon is different than being on earth, two things people once believed about the moon that we know aren’t true, and one thing they’d still like to know about the moon.
Students will:
- Illustrate why Mercury and Venus are classified as terrestrial or rock planets.
- Demonstrate why Mercury’s day is longer than its year.
- Observe the greenhouse effect to understand Venus’s gaseous atmosphere.
Day 6 - Earth
Students will:- Compare the distance from the Sun, size, and makeup of Earth to those of other planets within our solar system.
- Outline the relationship between the Earth and the Sun regarding time and the seasons.
- Contrast the climates of various regions of Earth relative to the Sun.
Day 7 - Mars
Students will:- Test for living cells in sand to examine how scientists test for life on Mars.
- Discover the characteristics of the atmosphere and terrain of Mars.
- Illustrate why Mars is classified as a terrestrial planet.
Day 8 - Jupiter & Saturn
Students will:- Illustrate why Jupiter and Saturn are classified as gas giants.
- Create their own Jupiter storm to simulate the huge storm patterns and streams of gas moving at different speeds on Jupiter’s surface.
- Test predictions about Saturn’s density versus the density of the rest of the planets.
Day 9 - Uranus & Neptune
Students will:- Illustrate why Uranus and Neptune are classified as gas giants.
- Simulate the rings of Uranus to understand why we can’t see them from Earth.
- Demonstrate how Neptune was discovered via mathematical calculations rather than a telescope.
Day 10 - Review
Students will:- Create a foldable about the eight planets in the solar system and their unique characteristics.
- Review content from the Solar System unit.
Inside the foldable, students will divide the square into eight parts, four for the terrestrial planets and four for the gas giants. They will then use the entries in their science journals from the past two weeks to fill in information on each planet.
The class will then divide in half and play a game of 'Solar System baseball' with the following rules:
1. If you answer a question correctly, you can move up a base.
2. If you answer incorrectly, it is an “out” (and the class answers as a whole).
3. Three “outs” and the inning is over and it’s the other team’s turn to “bat”.
4. The team with the most runs wins once all the questions have been answered.
Literature Connections
13 Planets: The Latest View of the Solar System by David A. Aguilar. Illus. by the author. 2011. 64p. National Geographic Children's Books. (978-1426307706). Gr. 2-5.
The newest edition of this book includes the 8 planets and 5 dwarf planets that form our solar system. It’s a great introduction to the planets as it gives a brief overview of each planet and the sun, explains how the solar system formed, and briefly touches on the discovery of new solar systems orbiting distant stars. It’s enough information to get students acquainted with the planets before studying them more in depth as we’ll be doing later in the unit.
Far-Out Guide to the Sun by Mary Kay Carson. 2010. 48p. Bailey Books. (978-1598451801). Gr. 2-5.
How The Universe Works by Heather Couper and Nigel Henbest. 1994. 160p. Reader’s Digest. (978-0895775764). Gr. 4-6.
This book is the source of 90% of the activities within this unit. It’s an amazingly creative resource for hands-on experiments kids can do to learn about the universe. The materials and prep work involved are never too complicated and experiments that require parents to help out are clearly noted. I was so excited to discover so many interesting experiments within this book and it’s a wonderful addition to any upper elementary science classroom.
If You Decide To Go To The Moon by Faith Mcnulty. Illus. by Steven Kellogg. 2005. 48p. Scholastic Press. (978-0590483599). Gr. 1-4.
In this imaginative book, readers go on a journey to the Moon and gain a perspective on how things differ up there. It’s a great way to help students understand the atmosphere and lack of gravity of the Moon as well as its unique landscape. The end of the fascinating journey gives students an idea of the importance of air and water, “Earth’s special blessings”. The book is a great way of helping students understand why we can’t live on the moon.
Another adventure with Miss Frizzle, this is the story of the Magic School Bus’s journey through the solar system. This series of books is always a great way to get students imaginations going and help them see science class as more of an adventure than a task. This book even ends with the class making a mobile of their solar system discoveries which is also an activity in the unit. Students will love doing the same thing as the students in the story. The only caveat is it still includes Pluto as a planet but that would also be a great way to show students that for a long time everyone believed it was.
This book is a great introduction to the gas giant planets. Though it focuses on Saturn and Jupiter, it goes into detail about the gas giants in general. Students will love learning about the rings of these gas giants, from the bold rings of Jupiter to the less visible rings of Saturn. Because it can be hard to grasp the idea of planets made up of mostly gas, the imagery and fun facts in this book make it a great resource for helping students understand the wonders of these two gas giants.
My Science Notebook: The Moon by Martine Podesto. Illus. by the author. 2009. 104p. Gareth Stevens Publishing. (978-0836892154). Gr. 3-5.
This book is a series of letters to ‘Dr. Brainy’, a scientist who knows all about the moon. The questions range from simple to more complex but Dr. Brainy never fails to give a thorough answer that’s easy to understand. This book would be a great addition to a KWL chart about the moon if students looked through it to see if Dr. Brainy answered any of the questions they came up with.
Nicolaus Copernicus: The Earth Is a Planet by Dennis B. Fradin. Illus. by Cynthia Von Buhler. 2004. 32p. Mondo Pub. (978-1593360061). Gr. 3-6.
This book is a beautifully illustrated biography on Copernicus and how he contributed to astronomy with his idea that the planets rotate around the sun. Students will love the pictures and the elementary-level text will make it easy for them to understand Copernicus’s theories and notions.
Pluto: From Planet to Dwarf by Elaine Landau. 2008. 48p. Children's Press. (978-0531147948). Gr. 2-5.
This helpful little book opens with two true or false statements, one of which is true and one of which is false. The false statement of course is that Pluto is a planet and the book goes on to explain the discovery of Pluto and its reclassification in 2006. The book is a great resource for helping students understand the difference between planets and dwarf planets.
Touchdown Mars! by Peggy Wethered and Ken Edgett. Illus. by Michael Chesworth. 2000. 40p. Putnam Juvenile. (978-0399232145). Gr. 1-4.
This adventure book brings the readers on the long journey from Earth to Mars as an astronaut. Readers get to explore Mars from its canyons and volcanoes to its moons, learning facts about the red planet along the way. It’s an imaginative piece of literature to add to the classroom and even contains a Mars A-B-Cyclopedia at the end for student reference.
Web Resources
This incredible simulation is a great way to help students visualize the vast distance between planets. Since the mobile we make in this unit has planets that are to scale but not distances to scale, this video is perfect for teaching that aspect. Students will be amazed at the vast distance between the outlying planets
Kids Astronomy: The Solar System
This interactive site gives users a chance to see the solar system in motion and to click on any part of it to learn more. It's a great way to help students visualize the different speeds at which the planets orbit the sun as well as the size of their orbits and the consequent varying lengths of their years. In 'visiting' all the various places in the solar system (even including comets and asteroid belts!), students get a full page of fascinating content on that topic that is both comprehensive and easy to understand.
Magic School Bus Space Chase
This quiz game coincides with the Magic School Bus book above. With each quiz question, the player follows Miss Frizzle around the solar system and answers questions along the way. The material is extremely relevant to the unit and its a fun way for students to review what they've learned.
NASA: StarChild Learning Center
StarChild is a great source for the most up-to-date information since it was created by NASA. Students can explore various topics on the solar system on both a beginner and intermediate level. The site has the option to have content pages read to you as well, which is great for younger students. In addition to information, there are games and activities and its easy to toggle back and forth between levels if users care to do so.
Wonderville: Phases of the Moon
This kid-friendly interactive activity gives students a quick lesson on the phases of the moon before it involves them in finding the phase of the moon that matches the moon's current position. I found a lot of simulations involving the phases of the moon to be somewhat confusing for children but this one makes it clear and also provides great visuals to really drive the point home.
Assessments
- Halfway through the unit, students will complete a Solar System Quiz that they will be graded on. (Answers: C, B, D, C, A B)
- At the end of the unit, students will complete the Solar System Unit Test. See also the
Unit Test Answer Key - Since the diamond accordion foldable created during the review was the product of notes taken in each student's science notebook over the unit, the foldable will be assessed as part of their grade. The rubric used to assess these foldables can be found here.
- Each student's lunar chart will be collected and graded at the end of the unit. Students will be assessed on their ability to accurately describe which phases of the moon they observed and their diligence in observing and recording the moon's phases throughout the two week period.
- Formative assessments will occur throughout the unit during all of the experiment activities that require predicting and testing. I will be looking for students who make thoughtful predictions, ask relevant questions before, during, and after the experiment, and can make educated conclusions by the end of it.
No comments:
Post a Comment